国产一级一级理论片一区二区_久久综合图区亚洲综合图区_国产精品V欧美精品av日韩_日韩精品成人在线_亚洲欧美日韩动漫_国产精品一二三区在线观看公司_日韩成人无码一区二区三区


免費(fèi)注冊(cè)快速求購(gòu)


分享
舉報(bào) 評(píng)價(jià)

移動(dòng)式葉綠素?zé)晒獬上裣到y(tǒng)

參考價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)

該廠商其他產(chǎn)品

我也要出現(xiàn)在這里

移動(dòng)式葉綠素?zé)晒獬上裣到y(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門針對(duì)大田日漸深入、溫室動力、氣候室和實(shí)驗(yàn)室場(chǎng)景的可以移動(dòng)的葉綠素?zé)晒鉁y(cè)量系統(tǒng)

詳細(xì)信息 在線詢價(jià)

 

移動(dòng)式葉綠素?zé)晒獬上裣到y(tǒng)PlantExplorerXS是由慧諾瑞德和荷蘭PhenoVation公司聯(lián)合推出的專門針對(duì)大田、溫室互動式宣講、氣候室和實(shí)驗(yàn)室場(chǎng)景的可以移動(dòng)的葉綠素?zé)晒鉁y(cè)量系統(tǒng)效高性。配備移動(dòng)式升降平臺(tái)車、內(nèi)置電腦的葉綠素?zé)晒獬上駟卧詣踊?、移?dòng)電源提升、顯示單元和操作單元。葉綠素?zé)晒獬上駟卧梢陨岛托D(zhuǎn)不折不扣,既可以測(cè)量不同高度的植物冠層支撐能力,也可以傾斜或水平角度測(cè)量穗(麥穗、稻穗高效利用、谷穗等)特征更加明顯、莢果(大豆、油菜等)講理論、果實(shí)(番茄的可能性、黃瓜、葡萄改革創新、柑橘等)知識和技能、葉片或冠層。

 

該系統(tǒng)成像面積為18x18cm新模式,具備500萬像素高清成像,同時(shí)具備“調(diào)制”和“非調(diào)制”葉綠素?zé)晒獬上駵y(cè)量功能不容忽視,既可以測(cè)量光合生理組織了,也可以測(cè)量形態(tài)結(jié)構(gòu)服務體系,同時(shí)配備功能強(qiáng)大的控制和分析軟件,且可以對(duì)大量數(shù)據(jù)進(jìn)行批處理分析搶抓機遇。該系統(tǒng)分析,無論室內(nèi)還是大田,都是進(jìn)行植物表型全面闡釋、光合生理非常激烈、植物抗逆、植物病理引人註目、育種領域、功能基因組、突變株篩選好宣講、種子生理/病理等研究的利器註入新的動力。
 

 

功能特性

  • 大田、溫室、氣候室雙重提升、實(shí)驗(yàn)室進(jìn)行移動(dòng)式測(cè)量
  • 葉綠素?zé)晒獬上駟卧梢陨怠⑿D(zhuǎn)
  • 葉綠素?zé)晒獬上窈捅硇头治鐾綔y(cè)量
  • 同時(shí)具備調(diào)制和非調(diào)制葉綠素?zé)晒鉁y(cè)量功能
  • 出色的高清相機(jī)(500萬像素)事關全面、高信噪比成像
  • 16位圖像格式表現明顯更佳,的成像質(zhì)量
  • 光源、相機(jī)技術節能、濾光片穩定發展、電腦一體化設(shè)計(jì)
  • 無可見鏡頭畸變,無需圖像校正
  • 成像范圍18 x 18cm
  • 多種測(cè)量protocol可選聯動,允許用戶編輯設(shè)定自己的protocol增持能力,包括但不限于Fv/Fm測(cè)量、標(biāo)準(zhǔn)誘導(dǎo)曲線測(cè)量行業內卷、暗弛豫測(cè)量追求卓越、OJIP快速誘導(dǎo)動(dòng)力學(xué)測(cè)量等等。
  • 可進(jìn)行功能強(qiáng)大的延時(shí)成像測(cè)量
  • 自動(dòng)計(jì)算熒光參數(shù)和表型參數(shù)
  • 具備圖像數(shù)據(jù)批處理分析功能
  • 提供多種功能強(qiáng)大的圖像分割功能
  • 對(duì)所有圖像數(shù)據(jù)均提供數(shù)據(jù)分級(jí)(用戶自定義范圍)并進(jìn)行圖像化顯示的過程中,并允許對(duì)分級(jí)篩選后的數(shù)據(jù)疊加到可見光圖像上展示
  • 圖像背景發展契機、偽彩色標(biāo)尺均有多種選擇
  • 允許用戶自定義多種ROI(性狀、數(shù)目促進進步、分布等)并對(duì)ROI的數(shù)據(jù)自動(dòng)分析
  • 嵌入式電腦進(jìn)行精確的成像發力、時(shí)間控制、光強(qiáng)控制和數(shù)據(jù)存儲(chǔ)
  • 功能強(qiáng)大的控制和分析軟件
  • 特別適合突變株篩選迎來新的篇章、育種材料/組合篩選共創美好、抗逆研究、病理研究、種子研究覆蓋範圍、果實(shí)研究優化程度、功能基因組學(xué)等

主要技術(shù)參數(shù)

  • 基本組成:移動(dòng)式升降平臺(tái)、葉綠素?zé)晒獬上駟卧獖^勇向前、移?dòng)電源不斷豐富、顯示單元、操作單元等
  • 葉綠素?zé)晒獬上穹绞剑?ldquo;調(diào)制”測(cè)量 +“費(fèi)調(diào)制”測(cè)量
  • 調(diào)制測(cè)量光:藍(lán)色LED組建, 450nm各有優勢,半峰全寬20nm,光強(qiáng)4000 umol m-2 s-1 重要的意義,獨(dú)立觸發(fā)
  • Kautsky測(cè)量光:藍(lán)色LED持續, 450nm,半峰全寬20nm占,光強(qiáng)4000 umol m-2 s-1
  • 飽和脈沖:藍(lán)色LED高質量, 450nm,半峰全寬20nm激發創作,光強(qiáng)4000 umol m-2 s-1前景,獨(dú)立觸發(fā)
  • 時(shí)間分辨動(dòng)力學(xué)光化光:紅光LED,660nm增幅最大,光強(qiáng)800 umol m-2 s-1
  • 遠(yuǎn)紅光:LED共享應用,735nm,半峰全寬20nm標準,35W
  • 相機(jī):CMOS傳感器示範推廣,500萬像素
  • 顏色深度:12bit
  • 標(biāo)準(zhǔn)幀率:37.5 FPS
  • 圖像格式:16bit
  • 相機(jī)光譜范圍:400~1000 nm
  • 接口:3個(gè)USB3.0,1個(gè)以太網(wǎng)口重要作用,1個(gè)HDMI接口
  • 嵌入式電腦:4核處理器持續向好,8G內(nèi)存,256G固態(tài)硬盤
  • 成像面積:18cm x 18cm
  • 升降高度:0-1200mm(高度可定制)
  • 旋轉(zhuǎn)角度:-90° ~ 90°
  • 顯示單元:15.6寸觸摸顯示屏
  • 供電:35萬mAh移動(dòng)電源充足,額定容量1260Wh進展情況,峰值功耗1000W,待機(jī)功耗35W
  • 系統(tǒng)尺寸:600mm x 720mm x 2000mm(長(zhǎng)x寬x高)

 

 

測(cè)量參數(shù)

  • 調(diào)制葉綠素?zé)晒鈪?shù):Fo綠色化發展、Fm至關重要、Fv/Fm、dFq/Fm=DF/Fm用上了、Fs’提升行動、Fm’、Fo’關註、Fq’/Fm’=Fv’/Fm’研究進展、rETR、NPQ、Y(NO)互動互補、Y(NPQ)發揮重要帶動作用、qN意向、qP意料之外、qL、1-qP和1-qL等;
  • 非調(diào)制葉綠素?zé)晒鈪?shù):Fo形式、Fi置之不顧、Fm、1-Fi/Fm數字化、IC-Area方便、IC-Area/Fv、PI各領域、Rfd應用領域、dRfd、RfdFm和RfdFt等;
  • 表型參數(shù):(植物進行培訓、種子發展機遇、果實(shí)的)數(shù)目、輪廓面積法治力量、長(zhǎng)度全技術方案、寬度、凸包點(diǎn)數(shù)供給、凸包面積優勢與挑戰、凸包面積/輪廓面積、最小外接圓(質(zhì)心解決方案、半徑趨勢、面積)、最小外接矩形(長(zhǎng)上高質量、寬一站式服務、面積、角度攻堅克難、alpha)和骨架等管理。

 

 

 

 

 

利用PhenoVation葉綠素?zé)晒獬上窦夹g(shù)發(fā)表的部分文獻(xiàn)

  1. Casto A L, Schuhl H, Schneider D, et al. (2021) Analyzing chlorophyll fluorescence images in PlantCV. Earth and Space Science Open Archive:5. https://doi.org/10.1002/essoar..2
  2. Wang L, Liu F, Hao X, et al. (2021) Identification of the QTL-allele System Underlying Two High-Throughput Physiological Traits in the Chinese Soybean Germplasm Population. Frontiers in Genetics, https://doi.org/10.3389/fgene.2021.600444
  3. Farooq M, van Dijk A D J, Nijveen H, et al. (2021) Prior Biological Knowledge Improves Genomic Prediction of Growth-Related Traits in Arabidopsis thaliana. Frontiers in Genetics, 11:609117. doi: 10.3389/fgene.2020.609117
  4. He Y, Li Y, Yao Y et al. (2021) Overexpression of watermelon m6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. Plant Physiology and Biochemistry, 168: 340-352.
  5. Wang W, Liu D, Qin M et al. (2021) Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. International Journal of Molecular Sciences, 22(5): 2687 https://doi.org/10.3390/ijms
  6. Singh R R, Pajar J A, Audenaert K, et al. (2021) Induced Resistance by Ascorbate Oxidation Involves Potentiating of the Phenylpropanoid Pathway and Improved Rice Tolerance to Parasitic Nematodes. Frontiers in Plant Science, 12:713870. doi: 10.3389/fpls.2021.713870
  7. Vidak M, Lazarevic B, Petek M, et al. (2021) Multispectral Assessment of Sweet Pepper (Capsicum annuum L.) Fruit Quality Affected by Calcite Nanoparticles. Biomolecules, 11(6), 832; https://doi.org/10.3390/biom
  8. Lazarevic B, Satovic Z, Nimac A, et al. (2021) Application of Phenotyping Methods in Detection of Drought and Salinity Stress in Basil (Ocimum basilicum L.). Frontiers in Plant Science, 12:629441. doi: 10.3389/fpls.2021.629441
  9. Romero-Perez A, Ameye M, Audenaert K, et al. (2021) Overexpression of F-Box Nictaba Promotes Defense and Anthocyanin Accumulation in Arabidopsis thaliana After Pseudomonas syringae Infection. Frontiers in Plant Science, 12:692606. doi: 10.3389/fpls.2021.692606
  10. Meng L, Mestdagh H, Ameye M, et al. (2021) Phenotypic variation of Botrytis cinerea Isolates is influenced by spectral light quality. Frontiers in Plant Science, 11:1233. doi: 10.3389/fpls.2020.01233
  11. De Zutter N, Ameye M, Debode J, et al. (2021) Shifts in the rhizobiome during consecutive in planta enrichment for phosphate-solubilizing bacteria differentially affect maize P status. Microbial Biotechnology, doi:10.1111/1751-7915.13824
  12. Stambuk P, Sikuten I, Preiner D, et al. (2021) Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. Plants, 10, 661. https://doi.org/10.3390/plants
  13. Tan J, de Zutter N, de Saeger S, et al. (2021) Presence of the Weakly Pathogenic Fusarium poae in the Fusarium Head Blight Disease Complex Hampers Biocontrol and Chemical Control of the Virulent Fusarium graminearum Pathogen. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2021.641890
  14. Flood P, Theeuwen T, Schneeberger K, Keizer P, Kruijer W, et al. (2020) Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 10.1038/s41477-019-0575-9ff. ffhal-v2f
  15. Velivelli S L S, Czymmek K J, Li H, Shaw J B, Buchko G W, Shah D M. (2020) Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. PNAS, DOI: 10.1073/pnas.2003526117
  16. Bhatnagar N, Pandey S. (2020) Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. Plant Physiology, DOI: https://doi.org/10.1104/pp.20.01309
  17. Venneman J, Vandermeersch L, Walgraeve C et al. (2020) Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating Auxin and Cytokinin Signaling. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2020.544435
  18. Tan J, Ameye M, Landschoot S et al. (2020) At the scene of the crime: New insights into the role of weakly pathogenic members of the fusarium head blight disease complex. Molecular Plant Pathology, DOI: 10.1111/mpp.12996
  19. Prinzenberg A E, Campos-Dominguez L, Kruijer W, Harbinson J, Aarts M G M. (2020) Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. Plant Cell & Environment, 1–14. https://doi.org/10.1111/pce.13811
  20. Zhang H, Chen Y, Niu Y, Zhang X, Zhao J, Sun L, Wang H, Xiao J, Wang X. (2020) Characterization and fine mapping of a leaf yellowing mutant in common wheat. Plant Growth Regulation, https://doi.org/10.1007/s10725-020-00633-0
  21. Jin X, Zarco-Tejada P, Schmidhalter U, Reynolds M P et al. (2020) High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms. IEEE Geoscience and Remote Sensing Magazine, DOI: 10.1109/MGRS.2020.2998816
  22. Sheng X-G, Branca F, Zhao Z-Q et al. (2020) Identification of Black Rot Resistance in a Wild Brassica Species and Its Potential Transferability to Cauliflower. Argonomy, 10: 1400. doi:10.3390/agronomy
  23. Pennisi G, Blasioli S, Cellini A, Maia L, Crepaldi A, Braschi I, Gianquinto G. (2019). Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Frontiers in plant science, 10, 305. doi:10.3389/fpls.2019.00305
  24. Pennisi G, Orsini F, Blasioli S, Cellini A et al. (2019) Resource use efficiency of indoor lettuce (Lactuca sativa L.) ction as affected by red:blue ratio provided by LED lighting. Scientific Reports, 9, 14127
  25. Van Es S W, van der Auweraert E B, Silveira S R, Angenent G C, van Dijk A D J, Immink R G H. (2019) Comprehensive phenotyping reveals interactions and functions of Arabidopsis thaliana TCP genes in yield determination. The Plant Journal, doi: 10.1111/tpj.14326
  26. Köhl J, Goossen-van de Geijn H, Groenenboom-de Haas L, et al. (2019) Stepwise screening of candidate antagonists for biological control of Blumeria graminis f. sp. tritici. Biological Control, 136: 104008
  27. Mohd Nadzir M M, Vieira Lelis F M, Thapa B, Ali A, Visser R G F, van Heusden A W, van der Wolf J M. (2019) Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Phathology, 68(1): 42-48
  28. Sall K, Dekkers B J W, Nonogaki M, Katsuragawa Y, Koyari R, Hendrix D, Willems L A J, Bentsink L, Nonogaki H. (2019) DELAY OF GERMINATION  1LIKE  4 acts as an inducer of seed reserve accumulation. The Plant Journal, 100: 7-19.
  29. Li H, Velivelli S L S, Shah D M. (2019) Antifungal Potency and Modes of Action of a Novel Olive Tree Defensin Against Closely Related Ascomycete Fungal Pathogens. Molecular Plant-Microbe Interactions. 32(12): 1646-1664.
  30. Prinzenberg A E, Viquez-Zamora M, Harbinson J, Lindhout P, van Heusden S. (2018) Chlorophyll fluorescence imaging reveals genetic variationand loci for a photosynthetic trait in diploid potato. Physiologia Plantarum, 164: 163-175.
  31. Van Rooijen R, Harbinson J, Aarts M G M. (2018) Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipidremodeling and heatshock genes. Plant Direct, 2(7): e00069
  32. Van Bezouw R F H M, Keurentjes J J B, Harbinson J, Aarts M G. (2018) Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. Plant Journal, 97(1): 112-133.
  33. Domazakis E, Wouters D, Visser R G F, Kamoun S, Joosten M H A J, Vleeshouwers V G A A. (2018) The ELR-SOBIR1 Complex Functions as a Two-Component Receptor-Like Kinase to Mount Defense Against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31(8): 795-802.
  34. Bazakos C, Hanemian M, Trontin C, Jimenez-Gomez J M, Loudet O. (2017) New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype. Annual Review of Plant Biology, 68:435-455
  35. Van Rooijen R, Kruijer W, Boesten R, van Eeuwijk F A, Harbinson J, Aarts M G M. (2017) Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nature Communications, 8: 1421
  36. Flood P J, Kruijer W, Schnabel S K, van der Schoor R, Jalink H, Snel J F H, Harbinson J, Aarts M G M. (2016) Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods, 12: 14. https://doi.org/10.1186/s13007-016-0113-y
  37. Mancarella S, Orsini F, van Oosten M J, SAnoubar R, Stanghellini C, Kondo S, Gianquinto G, Maggio A. (2016) Leaf sodium accumulation facilitates salt stress adaptation and preserves photosystem functionality in salt stressed Ocimum basilicum. Environmental and Experimental Botany, 130: 162-173.
  38. Virlet N, Sabermanesh K, Sadeghi-Tehran P, Hawkesford M J. (2016) Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Functional Plant Biology, 44(1): 143-153.
  39. Gorbe Sanchez E, Heuvelink E, de Gelder A, Stanghellini C. (2015) New Non-invasive Tools for Early Plant Stress Detection. Procedia Environmental Sciences, 29: 249-250.
  40. Kastelein P, Krijger M, Czajkowski R, van der Zouwen P S, van der Schoor R, Jalink H, van der Wolf J M. (2014) Development of Xanthomonas fragariae populations and disease progression in strawberry plants after sprayinoculation of leaves. Plant Pathology, 63(2): 255-263.
  41. Harbinson J, Prinzenberg A E, Kruijer W, Aarts M G M. (2012) High throughput screening with chlorophyll ?uorescence imaging and its use in crop improvement. Current Opinion in Biotechnology, 23:221


同類產(chǎn)品推薦


提示

×

*您想獲取產(chǎn)品的資料:

以上可多選必然趨勢,勾選其他,可自行輸入要求

個(gè)人信息:

鲁甸县| 江口县| 虞城县| 浏阳市| 安图县| 宣城市| 厦门市| 治县。| 永胜县| 大荔县| 南皮县| 岚皋县| 上思县| 嘉祥县| 攀枝花市| 株洲县| 商都县| 英超| 肇庆市| 游戏| 安庆市| 秦皇岛市| 玉环县| 余姚市| 陈巴尔虎旗| 台中市| 福安市| 咸丰县| 类乌齐县| 西藏| 平安县| 伊通| 沐川县| 惠水县| 英山县| 宜宾县| 丰顺县| 司法| 温州市| 芜湖县| 霍山县|