LCPro-SD 便攜式智能光合儀
LCPro-SD便攜式智能光合儀為智能型便攜式光合作用測定儀,用以測量植物葉片的光合速率重要作用、蒸騰速率等地、氣孔導(dǎo)度等與植物光合作用相關(guān)的參數(shù)。LCPro-SD便攜式智能光合儀應(yīng)用IRGA(紅外氣體分析)CO2分析模塊和雙激光調(diào)諧快速響應(yīng)水蒸氣傳感器精密測量葉片表面CO2濃度及水分的變化情況來考察葉片與植物光合作用相關(guān)的參數(shù)完成的事情。LCPro-SD便攜式智能光合儀通過人工光源物聯與互聯、CO2控制單元和溫度控制單元可以同時精確調(diào)控環(huán)境條件,從而測定光強改造層面、CO2濃度和溫度對植物光合系統(tǒng)的影響供給。LCPro-SD便攜式智能光合儀可在高濕度、高塵埃等惡劣環(huán)境中使用經驗分享,具有廣泛的適用性解決方案。
應(yīng)用領(lǐng)域
- 植物光合生理研究
- 植物抗脅迫研究
- 碳源碳匯研究
- 植物對氣候變化的相應(yīng)及其機理
- 作物新品種篩選
技術(shù)特點
- 配備手持式葉綠素?zé)晒鈨x,內(nèi)置了所有通用葉綠素?zé)晒夥治鰧嶒灣绦蛴辛εまD,包括兩套熒光淬滅分析程序?/span>3套光響應(yīng)曲線程序上高質量、OJIP-test等
- *自動、獨立控制環(huán)境參數(shù)(空氣濕度廣度和深度,CO2濃度深入交流,溫度引領作用,光照強度)
- 精確測量CO2和水蒸汽
- 便攜式設(shè)計,體積輕小處理,僅重4.4Kg
- 人體工程學(xué)設(shè)計建設,舒適型肩帶,攜帶操作非常簡便
- 微型IRGA置于葉室中助力各行,大大縮短CO2測量的反應(yīng)時間
- 可在惡劣環(huán)境下使用前來體驗,野外工作時間長
- 可方便互換不同種類的葉室、葉夾
- 葉室材料經(jīng)精心選擇確定性,以確保CO2及水分的測量精度
- 數(shù)據(jù)存儲量大更加廣闊,使用即插即拔的SD卡
- 維護(hù)方便,葉室所有區(qū)域都很容易清潔
- 采用低能耗技術(shù),野外單電池持續(xù)工作時間長,可達(dá)16小時
- 實時圖形顯示功能
技術(shù)指標(biāo)
- 測量參數(shù):光合速率創造性、蒸騰速率、胞間CO2濃度緊密協作、氣孔導(dǎo)度、葉片溫度線上線下、葉室溫度、光合有效輻射醒悟、氣壓等數據顯示,可進(jìn)行光響應(yīng)曲線和CO2響應(yīng)曲線測量。
- 手持葉綠素?zé)晒鈨x(選配)
- 測量參數(shù)包括F0也逐步提升、Ft記得牢、Fm、Fm’重要的作用、QY_Ln更多可能性、QY_Dn、NPQ足夠的實力、Qp緊迫性、Rfd、RAR更適合、Area高效、M0、Sm要素配置改革、PI體系、ABS/RC等50多個葉綠素?zé)晒鈪?shù),及3種給光程序的光響應(yīng)曲線影響力範圍、2種熒光淬滅曲線大局、OJIP曲線等
- 高時間分辨率新創新即將到來,可達(dá)10萬次每秒,自動繪出OJIP曲線并給出26個OJIP-test測量參數(shù)包括F0有序推進、Fj設施、Fi、Fm道路、Fv規模設備、Vj、Vi指導、Fm/F0競爭力、Fv/F0、Fv/Fm進一步完善、M0集聚、Area、Fix Area調整推進、Sm狀況、Ss、N機製、Phi_P0全過程、Psi_0、Phi_E0探討、Phi-D0不負眾望、Phi_Pav、PI_Abs調解製度、ABS/RC精準調控、TR0/RC、ET0/RC應用的因素之一、DI0/RC等
- CO2測量范圍:0-3000ppm
- CO2測量分辨率:1ppm
- CO2采用紅外分析解決,差分開路測量系統(tǒng),自動置零敢於監督,自動氣壓和溫度補償
- H2O測量范圍:0-75 mbar
- H2O測量分辨率:0.1mbar
- PAR測量范圍:0-3000 μmol m-2 s-1幅度,余弦校正
- 葉室溫度:-5 - 50℃ 精度:±0.2℃
- 葉片溫度:-5 - 50℃
- 空氣泵流量:100 - 500ml / min
- CO2控制:由內(nèi)部CO2供應(yīng)系統(tǒng)提供,zui高達(dá)2000ppm
- H2O控制:可高于或低于環(huán)境條件
- 溫度控制:由微型peltier元件控制更合理,寬葉葉室可高于或低于環(huán)境14℃適應能力,其他葉室為10℃
- PAR控制:由高效、低熱紅/藍(lán)LED陣列單元控制實際需求,zui高2000μmol m-2 s-1 (針葉zui高1500μmol m-2 s-1)
- 可選配多種帶有光源的可控溫葉室解決方案、葉夾
- 寬葉葉室:測量面積6.25cm2,適用于闊葉
- 窄葉葉室:測量面積5.2cm2善謀新篇,適用于條形葉
- 針葉葉室:適用于簇狀針葉
- 小型葉葉室:葉室直徑為16.5mm增產,適用于葉片直徑在11mm和16mm之間的葉片
- 小型草本植物群落測量室:測量高度低于55mm的整株草本植物光合作用
- 整株擬南芥測量室
- 土壤呼吸室:體積為1L便利性,含土壤溫度傳感器
- 果實測量室:兩部分組成,上部透明行動力、下部為體積為1L
- 熒光儀聯(lián)用適配器:適用于連接多種葉綠素?zé)晒鈨x
| | | | |
小型葉葉室 | 小型草本植物群落測量室 | 整株擬南芥測量室 | 果實測量室 | 熒光儀聯(lián)用適配器 |
- 數(shù)據(jù)存儲:1G SD卡提供有力支撐,可存儲16,000,000組典型數(shù)據(jù)
- 數(shù)據(jù)輸出:Mini-B型USB接口,RS232九針D型標(biāo)準(zhǔn)接口保供,采用38400波特率與打印機或PC通訊
- 供電系統(tǒng):內(nèi)置12V 7AH蓄電池自行開發,可持續(xù)工作至16小時,智能充電器
- 尺寸:主機230×110×170mm責任,測量手柄300×80×75mm
- 重量:主機4.4Kg應用情況,測量手柄0.8Kg
- 操作環(huán)境:5到45℃
典型應(yīng)用
1. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69
本研究對不同類型的抗草甘膦大豆進(jìn)行草甘膦處理,發(fā)現(xiàn)大豆的各項光合參數(shù)組建,包括葉綠素含量表現、氣孔導(dǎo)度、光合速率和蒸騰速率都有所降低深刻變革。
2. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422
本研究設(shè)計了一個氣室裝置結論,用以研究常青櫟(Quercus ilex)在剪去部分葉片(模擬啃食)和加入甲醇(模擬附近其他植物被啃食時釋放的信號)時的生理變化,發(fā)現(xiàn)兩種處理都提高了植物的凈光合速率質生產力。

產(chǎn)地:英國
參考文獻(xiàn)(近三年發(fā)表近200篇SCI文章適應性強,僅列出部分代表性文獻(xiàn))
- Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions, Silva Carvalho K, et al. 2013, Acta Physiologiae Plantarum, 35(1), 13-21
- Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization, Dias M C, et al. 2013, Biologia Plantarum, 57(1):33-40
- Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees, Mengistu T, et al. 2012, Forest Ecology and Management, 278, 1–8
- Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine c*r ‘Touriga Nacional’ growing under field conditions, Moutinho-Pereira J, et al. 2012, 160(3), 237-249
- Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis, Blanch J. S. et al. 2011, Plant biology, DOI: 10.1111/j.1438-8677.2011.00492.x
- Photosynthesis by six Portuguese maize c*rs during drought stress and recovery, Carvalho RC. et al. 2011, Acta Physiologiae Plantarum, 33(2): 359-374
- Hydrogen peroxide spraying alleviates drought stress in soybean plants, Ishibashi Y. et al. 2011, Journal of plant physiology, 168(13): 1562-1567
- Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands, Mengistu T. et al. 2011, Tree Physiology, 31(7): 740-750
- Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422
- Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula, Sellin A. et al. 2011, Ecological research, 25(1): 173-183
- A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek, Sengupta D. et al. 2011, Planta, 233(6): 1111-1127
- Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought, Beis A. et al. 2010, Functional Plant Biology, 37(2): 139-146
- The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Holá D. et al. 2010, Photosynthetica 48(4): 545-558
- Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum, Makoi J.H.J.R. et al. 2010, Photosynthetica, 48(1): 143-155
- Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species, Cuesta B. et al. 2010, Forest Ecology and Management, 260(1): 71-78
- Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69
- Effect of glyphosate on symbiotic N2 fixation and nickel concentration in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Applied Soil Ecology, 44(2), 176-180