主要功能
單獨(dú)或同步測量葉綠素?zé)晒夂?P700
兩個光系統(tǒng)的誘導(dǎo)動力學(xué)曲線(包括快相和慢相)
兩個光系統(tǒng)的快速光曲線和光響應(yīng)曲線
淬滅分析、暗馳豫分析
典型的 P700 曲線測量
通過葉綠素?zé)晒夂?P700 的同步測量獲知兩個光系統(tǒng)的電子傳遞動力學(xué)便利性、電子載體庫的大小方法、圍繞 PSI 的環(huán)式電子傳遞動力學(xué)等
測量參數(shù)
PS II參數(shù):Fo, Fm, F, Fm’, Fv/Fm, Y(II) 即 △F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I參數(shù):P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
其他測量參數(shù):Post-Illumination(鼓包),PQ-Pool(PQ庫)等
應(yīng)用領(lǐng)域
特別適合于在野外現(xiàn)場進(jìn)行深入的 PSII 和 PSI 活性測量提供有力支撐,是植物生理學(xué)切實把製度、植物生態(tài)學(xué)、農(nóng)學(xué)自行開發、林學(xué)進行部署、園藝學(xué)、植物逆境研究的強(qiáng)大助手應用情況。光纖版設(shè)計更輕便保護好,便于攜帶,另外解決問題,光纖版尤其適合附著樣品系列,如苔蘚作用,地衣的樣品的原位測量相互配合。
主要技術(shù)參數(shù)
P700 雙波長測量光:LED,830 nm 和 875 nm
PSII 熒光測量光:LED著力增加,460 nm 或 620 nm
紅色光化光:LED陣列智能化,635 nm;大連續(xù)光強(qiáng) 4000 μmol m-2 s-1
藍(lán)色光化光:LED處理,460 nm建設;大連續(xù)光強(qiáng) 500 μmol m-2 s-1
單周轉(zhuǎn)飽和閃光(ST):200000 μmol m-2 s-1,5~50 μs 可調(diào)
多周轉(zhuǎn)飽和閃光(MT):20000 μmol m-2 s-1開展研究,1~1000 ms 可調(diào)
遠(yuǎn)紅光:720 nm
選購指南
一姿勢、高等植物葉片基本款
系統(tǒng)組成:光纖版主機(jī),光纖首要任務,光適應(yīng)葉夾綠色化,暗適應(yīng)葉夾,軟件等
注意:便攜式光纖型雙通道調(diào)制葉綠素?zé)晒鈨x光化光兼具紅光和藍(lán)光
 |
Dual-PAM/F 基本款
|
二發展、懸浮樣品測量基本款
系統(tǒng)組成::通用型主機(jī)保持穩定,光纖,懸浮液測量用樣品池,軟件等支撐作用。
注意:選購懸浮樣品測量基本款時可以不選購光適應(yīng)葉夾研學體驗,建議選配磁力攪拌器。
 |
Dual-PAM/F 懸浮樣品測量基本款 |
 |  | ![Dual-09.jpg Dual-09.jpg]() |
同步測量 PSII(紅色)和 PSI(藍(lán)色)的誘導(dǎo)曲線 | 同步測量 PSII(紅色)和 PSI(藍(lán)色)的光響應(yīng)曲線 | 典型的 P700 測量曲線 |
|
|
|
 |  |  |
打開飽和脈沖時葉綠素?zé)晒庑盘枺?span style="color: rgb(255, 0, 0);">紅色)和 P700(藍(lán)色)信號變化 | 以線性時間測量的熒光快速動力學(xué)曲線 | 以對數(shù)時間測量的熒光快速動力學(xué)曲線 |
三最為突出、其他可選附件
1落實落細,2060-B:擬南芥葉夾,60度角光適應(yīng)葉夾高效化,與獨(dú)立微型光量子/溫度傳感器 2060-M 連用進(jìn)行測量技術先進,特別適于測量擬南芥類小葉片。使用前提是需配置 2060-M延伸。
2認為,2060-M:微型光量子/溫度傳感器,測量 PAR 和溫度新趨勢,可連接 MINI-PAM 后獨(dú)立使用反應能力,多與 2060-B 結(jié)合使用。
3學習,MKS-2500:為 KS-2500 配置的磁力攪拌器結構重塑,專為 KS-2500 配置,裝在 KS-2500 下方應用優勢,帶動 KS-2500 內(nèi)部的轉(zhuǎn)子旋轉(zhuǎn)高質量發展,對液體樣品進(jìn)行攪拌。
4高效節能,2030-B90:90 度角光纖適配器影響力範圍,安裝在 2030-B 或 2060-B 上,使光纖與樣品成 90 度角培訓。
產(chǎn)地:德國WALZ
參考文獻(xiàn)
數(shù)據(jù)來源:光合作用文獻(xiàn) Endnote 數(shù)據(jù)庫不合理波動,更新至 2016 年 9 月,文獻(xiàn)數(shù)量超過 6000 篇
原始數(shù)據(jù)來源:Google Scholar
Zhou, W., et al. (2016). "Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta)." Photosynthesis Research: 1-12.
Yamori, W., et al. (2016). "A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice." Scientific Reports 6.
Yamamoto, H., et al. (2016). "Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis." Nature Plants 2: 16012.
Wang, H., et al. (2016). "The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain." Scientific Reports 6: 24923.
Xue, X., et al. (2016). "Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness." New Phytologist: n/a-n/a.
Shimakawa, G., et al. (2016). "Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis." Photosynthesis Research: 1-13.
Tadini, L., et al. (2016). "GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis." Plant Physiology: pp. 02033.02015.
Takagi, D., et al. (2016). "Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves." Photosynthesis Research: 1-12.
Leonelli, L., et al. (2016). "Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis." The Plant Journal: n/a-n/a.
Meneghesso, A., et al. (2016). "Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana." Photosynthesis Research: 1-15.
Huang, W., et al. (2016). "PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra." Photosynthesis Research: 1-8.
Mishanin, V. I., et al. (2016). "Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins." Photosynthesis Research.
Benson, S. L., et al. (2015). "An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis." Nature Plants 1: 15176.
Gao, F., et al. (2015). "NdhV Is a Subunit of NADPH Dehydrogenase Essential for Cyclic Electron Transport in Synechocystis sp. Strain PCC 6803." Plant Physiology: pp. 01430.02015.
Gerotto, C., et al. (2015). "In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S." Plant Physiology 168(4): 1747-1761.
Giovagnetti, V., et al. (2015). "Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana." Photosynthesis Research: 1-11.
Iwai, M., et al. (2015). "Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens." Nature Plants 1(2).
Timm, S., et al. (2015). "Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of Arabidopsis thaliana." The Plant Cell: tpc. 15.00105.
Tsabari, O., et al. (2015). "Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light‐stressed plants." The Plant Journal 81(6): 884-894.
Zhao, J., et al. (2015). "NdhQ Is Required to Stabilize the Large Complex of NADPH Dehydrogenase in Synechocystis sp. Strain PCC 6803." Plant Physiology: pp. 00503.02015.
Zivcak, M., et al. (2015). "Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves." Photosynthesis Research: 1-15.