国产一级一级理论片一区二区_久久综合图区亚洲综合图区_国产精品V欧美精品av日韩_日韩精品成人在线_亚洲欧美日韩动漫_国产精品一二三区在线观看公司_日韩成人无码一区二区三区


免費(fèi)注冊(cè)快速求購(gòu)


分享
舉報(bào) 評(píng)價(jià)

ESS-D200 3D Aerosol LIDAR 三維氣溶膠激光雷達(dá)

參考價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)

該廠商其他產(chǎn)品

我也要出現(xiàn)在這里

詳細(xì)信息 在線詢價(jià)

3D Aerosol LIDAR
三維氣溶膠激光雷達(dá)
(型號(hào):ESS-D200)

1、設(shè)備簡(jiǎn)介
希臘Raymetrics氣溶膠激光雷達(dá)系統(tǒng)采用世界***進(jìn)的激光雷達(dá)制造工藝集成應用,利用不同波段激光信號(hào)探測(cè)大氣氣溶膠探討、水汽等垂直闊線,可以實(shí)時(shí)探測(cè)能見(jiàn)度和云底高度等服務效率,結(jié)合3D掃描技術(shù)明確相關要求,可以探測(cè)污染物的濃度分布及來(lái)源。探測(cè)包括氣溶膠、能見(jiàn)度深化涉外、水汽體系、火山灰、煙霧開展試點、污染來(lái)源攜手共進、云底高度、邊界層高度推進一步、光學(xué)厚度經過、消光系數(shù)、后向散射系數(shù)力度、色比等明確了方向。
其客戶遍布美國(guó)、中國(guó)勇探新路、印度單產提升、歐洲、南亞試驗、非洲和南美等地區(qū)勞動精神,應(yīng)用單位包括*、美國(guó)*切實把製度、英國(guó)*保供、韓國(guó)*、空管局進行部署、歐空局、德國(guó)宇航中心應用情況、北京大學(xué)保護好、南京大學(xué)等,應(yīng)用領(lǐng)域包括氣象表現、環(huán)境特點、航空、軍事等科研和應(yīng)用等結論。
希臘Raymetrics可以根據(jù)用戶實(shí)際需要進(jìn)行量身定制部署安排,例如,ESS-D200型激光雷達(dá)用于探測(cè)霧技術、能見(jiàn)度及污染物來(lái)源等推廣開來;ESS-D300型激光雷達(dá)則用于探測(cè)火山灰、氣溶膠及邊界層高度等相對較高;ESS-D400型激光雷達(dá)則用于探測(cè)水汽濃度垂直闊線等資源配置。在這些應(yīng)用中,可以根據(jù)探測(cè)的范圍和內(nèi)容相關,定制激光器的功率大力發展、激光波長(zhǎng)豐富內涵、交叉極化波長(zhǎng)、拉曼產能提升、鏡頭尺寸等適應性,掃描模式也可以選擇垂直觀測(cè)或三維掃描等方式。

產(chǎn)品通過(guò)ISO 9001:2008體系認(rèn)證通過活化,性能及指標(biāo)滿足歐洲氣溶膠研究激光雷達(dá)觀測(cè)網(wǎng)(EARLINET)需求落地生根,自2012年以來(lái)參與了上百個(gè)大型科學(xué)研究計(jì)劃,在大氣科學(xué)研學體驗、天氣預(yù)報(bào)建設項目、環(huán)境治理、航空氣象落實落細、空間科學(xué)等領(lǐng)域發(fā)揮了***貢獻(xiàn)相結合。
ESS-D200型三維掃描氣溶膠激光雷達(dá),擁有大功率激光器製高點項目、大口徑望遠(yuǎn)鏡及全3D掃描方式為產業發展,可以為航空環(huán)境預(yù)報(bào)及預(yù)警提供重要的氣象參數(shù),探測(cè)要素包括:能見(jiàn)度有所增加、霧各項要求、污染物來(lái)源及云底高度等,是市場(chǎng)上***秀的氣溶膠雷達(dá)系統(tǒng)越來越重要的位置。


2新技術、ESS-D200雷達(dá)主要功能
(1)能見(jiàn)度監(jiān)測(cè):
該雷達(dá)系統(tǒng)可以提供斜視能見(jiàn)度(SVR),與跑道能見(jiàn)度(RVR)相比順滑地配合,斜視能見(jiàn)度更能真實(shí)的反映飛行員的視覺(jué)感受深入。





















(2)云底高度監(jiān)測(cè):
該雷達(dá)系統(tǒng)可以提供三維空間云底高度,可以更真實(shí)的反映整個(gè)機(jī)場(chǎng)上空云的三維分布逐漸顯現,而普通的云高儀采樣空間僅為其頭頂上方狹小的區(qū)域全會精神。
(3)霧霾監(jiān)測(cè):該雷達(dá)系統(tǒng)可以監(jiān)測(cè)平流霧的分布、動(dòng)向及來(lái)源拓展基地,可以為航空預(yù)警提供預(yù)報(bào)服務(wù)集中展示。
(4)氣溶膠類型甄別: 該雷達(dá)系統(tǒng)可以區(qū)分火山灰氣溶膠、天然灰塵體系流動性、煙霧探索創新、海洋氣溶膠、冰云積極拓展新的領域、水云等成分配套設備,為航空環(huán)境預(yù)警提供有力技術(shù)保障。

3、ESS-D200雷達(dá)輸出產(chǎn)品
氣溶膠推進高水平、氣溶膠類型脫穎而出、能見(jiàn)度、云底高度生產創效、邊界層高度結構、光學(xué)厚度、消光系數(shù)優化上下、后向散射系數(shù)能力建設、色比等。3D掃描方式生產體系,探測(cè)距離10-15km服務,可以為航空環(huán)境預(yù)報(bào)及預(yù)警提供重要的氣象參數(shù)。

4能力和水平、ESS-D200雷達(dá)主要特點(diǎn)
(1)激光能量:在355nm單脈沖能量可達(dá)~30mJ覆蓋;
(2)200mm大口徑望遠(yuǎn)鏡,有效提升信號(hào)效率研究;
(3)的信噪比高效,探測(cè)距離可達(dá)10~15km;
(4)系統(tǒng)可以全自動(dòng)遠(yuǎn)程控制提高;
(5)系統(tǒng)包含標(biāo)準(zhǔn)軟件包:雷達(dá)控制機構、數(shù)據(jù)分析和實(shí)時(shí)顯示及存儲(chǔ)。
(6)符合歐盟標(biāo)準(zhǔn)人眼安全等級(jí)60825-1:2007交流;
(7)兼容歐洲氣溶膠研究激光雷達(dá)觀測(cè)網(wǎng)(EARLINET)要求基礎;
(8)*:ISO9001:2008管理體系認(rèn)證;
(9)應(yīng)用領(lǐng)域:氣象形勢、環(huán)境高質量、航空、軍事選擇適用、科學(xué)研究等。 4技術(shù)指標(biāo):
掃描范圍:10-15km
標(biāo)準(zhǔn)檢測(cè)波長(zhǎng):355 nm co-polar
可拓展監(jiān)測(cè)波段:355 nm cross-polar
387 nm nitrogen Raman
分辨率:7.5m
采樣時(shí)間分辨率:1秒或者10秒等多種采樣方式
FWHM 帶寬近似:~0.5 nm per wavelength
激光能量:30MJ/每脈沖@355nm
重復(fù)率:20Hz
光束擴(kuò)展:X10
檢測(cè)模式:近場(chǎng)和遠(yuǎn)場(chǎng)測(cè)量的模擬和光子計(jì)數(shù)
3D掃描范圍:方位角0~357°設計;天頂角0~90°
內(nèi)部PC:工業(yè)級(jí)PC運(yùn)行窗口
氣候控制:激光雷達(dá)頭和控制單元的加熱和空調(diào)單元
軟件功能:儀表控制業務指導、測(cè)量調(diào)度、系統(tǒng)對(duì)齊和設(shè)置程序就此掀開、數(shù)據(jù)采集長足發展、數(shù)據(jù)存儲(chǔ)(數(shù)據(jù)庫(kù))、數(shù)據(jù)分析穩步前行、數(shù)據(jù)可視化
尺寸(主鏡):200毫米
視場(chǎng)(FOV):0.25至3 MRAD(用戶可調(diào))
重疊:<200 m(帶工廠設(shè)置FOV)
電源:110 - 240 V, 50 - 60 Hz
功耗:25 Amps.
尺寸:約1.8 m×1 m×1 m(HXD)
重量:約220公斤
自動(dòng)化:自動(dòng)化提供遠(yuǎn)程可操作的測(cè)量調(diào)度
保修:1年為標(biāo)準(zhǔn)
技術(shù)配件和維護(hù):3天現(xiàn)場(chǎng)安裝培訓(xùn)課程標(biāo)準(zhǔn)

5結構不合理、ESS-D200應(yīng)用例子
[1] de Miranda, R.M., et al. (2017): The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for S?o Paulo city, Brazil, Environ Monit Assess, 189: 6. https://doi.org/10.1007/s10661-016-5659-7

[2] Gouveia, D. A., et al. (2017): Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements, Atmos. Chem. Phys., 17, 3619-3636, https://doi.org/10.5194/acp-17-3619-2017

[3] Dorman C.E. (2017): Early and Recent Observational Techniques for Fog. In: Kora?in D., Dorman C. (eds) Marine Fog: Challenges and Advancements in Observations, Modeling, and Forecasting. Springer Atmospheric Sciences. Springer, Cham

[4] Chilinski, M.T., et al. (2016): Modelling and Observation of Mineral Dust Optical Properties over Central Europe, Acta Geophys. 64: 2550. https://doi.org/10.1515/acgeo-2016-0069

[5] Guerrero-Rascado, J. L., and Coauthors (2016): Latin American Lidar Network (LALINET) for aerosol research diagnosis on network instrumentation. J. Atmos. Sol.-Terr. Phys., 138–139, 112–120, doi:https://doi.org/10.1016/j.jastp.2016.01.001.

[6] George Georgoussis et al. (2016): Signal to Noise Ratio Estimations for a Volcanic Ash Detection Lidar. Case Study: the Met Office, EPJ Web of Conferences 119, 07002, DOI: 10.1051/epjconf/

[7] F. Tan et al. (2015): Monsoonal variations in aerosol optical properties and estimation of aerosol optical depth using ground-based meteorological and air quality data in Peninsular Malaysia, Atmos. Chem. Phys., 15, 3755–3771, 2015, doi:10.5194/acp-15-3755-2015

[8] Mbengue, S., Alleman, L.Y. & Flament, P. (2015): Bioaccessibility of trace elements in fine and ultrafine atmospheric particles in an industrial environment, Environ Geochem Health, 37: 875. https://doi.org/10.1007/s10653-015-9756-2

[9] Rose, C., et al. (2015): Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere, Atmos. Chem. Phys., 15, 3413-3428, https://doi.org/10.5194/acp-15-3413-2015

[10] Barbosa, H. M. J., et al (2014): A permanent Raman lidar station in the Amazon: Description, characterization and first results. Atmos. Meas. Tech., 7, 1745–1762, doi:https://doi.org/10.5194/amt-7-1745-2014.

[11] Granados-Mu?oz, M. J., et al. (2014): Retrieving aerosol microphysical properties by Lidar-Radiometer Inversion Code (LIRIC) for different aerosol types, J. Geophys. Res. Atmos., 119, 4836–4858, doi:10.1002/2013JD021116.

[12] Papayannis A. et al. (2014): Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: A case study, Science of the Total Environment, 500-501 (2014) 277-294, /10.1016/j.scitotenv.2014.08.101

[13] Zawadzka, O., Makuch, P., Markowicz, K.M. et al. (2014): Studies of aerosol optical depth with the use of Microtops II sun photometers and MODIS detectors in coastal areas of the Baltic Sea, Acta Geophys. 62: 400. https://doi.org/10.2478/s11600-013-0182-5

[14] Navas-Guzmán, F., D. et al. (2013): Eruption of the Eyjafjallaj?kull Volcano in spring 2010: Multiwavelength Raman lidar measurements of sulphate particles in the lower troposphere, J. Geophys. Res. Atmos., 118, 1804–1813, doi:10.1002/jgrd.50116.

[15] Eslés, V., et al. (2012): Study of the correlation between columnar aerosol burden, suspended matter at ground and chemical components in a background European environment, J. Geophys. Res., 117, D04201, doi:10.1029/2011JD016356.

[16] Granados-Mu?oz, M. J., et al. (2012): Automatic determination of the planetary boundary layer height using lidar: One-year analysis over southeastern Spain, J. Geophys. Res., 117, D18208, doi:10.1029/2012JD017524.

[17] Hervo, M., et al.(2012), and Sellegri, K.: Physical and optical properties of 2010 Eyjafjallaj?kull volcanic eruption aerosol: ground-based, Lidar and airborne measurements in France, Atmos. Chem. Phys., 12, 1721-1736, https://doi.org/10.5194/acp-12-1721-2012

[18] Pérez-Ramírez, D., et al. (2012): Retrievals of precipitable water vapor using star photometry: Assessment with Raman lidar and link to sun photometry, J. Geophys. Res., 117, D05202, doi:10.1029/2011JD016450.

[19] Zieliński, T., Peski, T., Makuch, P. et al. (2012): Studies of aerosols advected to coastal areas with the use of remote technique, Acta Geophys. 60: 1359. https://doi.org/10.2478/s11600-011-0075-4

[20] Boulon, J., et al. (2011): Investigation of nucleation events vertical extent: a long term study at two different altitude sites, Atmos. Chem. Phys., 11, 5625-5639, https://doi.org/10.5194/acp-11-5625-2011, 2011.

[21] Córdoba-Jabonero, C., et al. (2011): Synergetic monitoring of Saharan dust plumes and potential impact on surface: a case study of dust transport from Canary Islands to Iberian Peninsula, Atmos. Chem. Phys., 11, 3067-3091, https://doi.org/10.5194/acp-11-3067-2011

[22] Guerrero-Rascado, J. L., et al. (2011): Aerosol closure study by lidar, Sun photometry, and airborne optical counters during DAMOCLES field campaign at El Arenosillo sounding station, Spain, J. Geophys. Res., 116, D02209, doi:10.1029/2010JD014510.

[23] Themistocleous K. et al. (2010): Monitoring Air Pollution in the Vicinity of Cultural Heritage Sites in Cyprus Using Remote Sensing Techniques. In: Ioannides M., Fellner D., Georgopoulos A., Hadjimitsis D.G. (eds) Digital Heritage. EuroMed 2010. Lecture Notes in Computer Science, vol 6436. Springer, Berlin, Heidelberg

[24] George Georgoussis et al. (2009): Continuous measurements of PM at ground level over an industrial area of Evia (Greece) using synergy of a scanning Lidar system and in situ sensors during TAMEX campaign, EMS Annual Meeting Abstracts, Vol. 6, EMS2009-309-5, 2009, 9th EMS / 9th ECAM

[25] Guerrero-Rascado, J. L., et al. (2009): Extreme Saharan dust event over the southern Iberian Peninsula in september 2007: active and passive remote sensing from surface and salite, Atmos. Chem. Phys., 9, 8453-8469, https://doi.org/10.5194/acp-9-8453-2009

[26] Kazadzis, S., et al. (2009): Spatial and temporal UV irradiance and aerosol variability within the area of an OMI salite pixel, Atmos. Chem. Phys., 9, 4593-4601, https://doi.org/10.5194/acp-9-4593-2009

[27] Amiridis, V., et al. (2007): Aerosol Lidar observations and model calculations of the Planetary Boundary Layer evolution over Greece, during the March 2006 Total Solar Eclipse, Atmos. Chem. Phys., 7, 6181-6189, https://doi.org/10.5194/acp-7-6181-2007

[28] Papayannis, A., et al. (2007): Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, salite observations and model validation, Geophys. Res. Lett., 34, L07806, doi:10.1029/2006GL029125.


同類產(chǎn)品推薦


提示

×

*您想獲取產(chǎn)品的資料:

以上可多選新模式,勾選其他實現,可自行輸入要求

個(gè)人信息: